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Generating sample paths of stochastic differential equations (SDE) using the Monte Carlo method finds wide
applications in financial engineering. Discretization is a popular approximate approach to generating those paths:
it is easy to implement but prone to simulation bias. This article presents a new simulation scheme to exactly
generate samples for SDEs. The key observation is that the law of a general SDE can be decomposed into
a product of the law of standard Brownian motion and the law of a doubly stochastic Poisson process. An
acceptance-rejection algorithm is devised based on the combination of this decomposition and a localization
technique. The numerical results corroborates that the mean-square error of the proposed method is in the order
of O(t−1/2), which is superior to the conventional discretization schemes. Furthermore, the proposed method also
can generate exact samples for SDE with boundaries which the discretization schemes usually find difficulty in
dealing with.
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1. Introduction. Finding an efficient way to implement the Monte Carlo simulation method to
generate sample paths for stochastic differential equations (SDE) has triggered a large amount of interest
from both the financial engineering and simulation communities. The solutions to SDEs are used in
many financial applications to model the evolution of market variables. People are especially interested in
evaluating the expected values of functionals on such solutions. For instance, derivative pricing problems
are usually reduced down to calculating the expectation of a payoff function over the sample paths of
the modeling SDE. However, explicit-form solutions are absent in most circumstances and we have to
rely on some numerical methods to obtain them. The Monte Carlo method becomes an attractive option
because it can be implemented flexibly and its computational complexity does not depend upon the
dimensionality of the problem. In this paper, we focus on constructing an acceptance-rejection method
to simulate the sample paths of SDEs. The method is exact in the sense that the marginal distribution
of the simulated values coincides with the marginal distribution of the continuous-time process on the
simulation time grid.

The conventional approach to SDE simulation is via various discretization schemes. The idea is to
divide the whole time interval of interest into a discrete time grid and then to simulate a discrete process
to approximate the original continuous-time SDE on the time grid according to its finite-difference coun-
terparts. They introduce discretization bias into the simulation. We need to increase the number of time
steps considerably to achieve a higher accuracy for the simulation outcomes. Thus, it is computationally
expensive to reduce such bias down to an acceptable level. A great deal of research has been devoted
to establishing the corresponding convergence rates, or how fast the discretization bias decreases as the
number of steps increases, under different schemes; see Kloeden and Platen [37] for a comprehensive
overview in that direction.

Given a fixed computational time budget, it is difficult for the discretization schemes to resolve a
tradeoff between the discretization bias and the simulation variance. Expending more efforts to increase
the number of time steps per path reduces the bias due to discretization, but it also decreases the number
of samples that can be completed within the budget, which has a direct impact on the estimator variance.
Duffie and Glynn [21] show that the optimal root mean-square error (RMSE), a performance indicator
summarizing the effects of both bias and variance, can reach O(t−β/(2β+1)) for a discretization scheme
with a convergence rate β for a fixed time budget t. This makes precise the notion that simulating an
SDE using a discretization scheme is inferior to simulating it exactly, which can achieve the RMSE with
an order of O(t−1/2). Meanwhile, the discretization schemes hardly yield valid confidence intervals for
estimates because the magnitudes of the simulation bias are often unknown.
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The discretization schemes encounter obstacles in generating samples for the SDEs with boundaries.
Such SDEs are of particular interest in many financial applications. A well known example is the Cox-
Ingersoll-Ross (CIR) model. The solution to this SDE remains nonnegative and it is thus widely used in
finance to describe the dynamics of interest rates or equity volatility (see, e.g., Cox, Ingersoll and Ross
[18] and Heston [29]). As shown in Section 2, the discretization approximation of this model will produce
negative samples with a significant chance. Thus, some kind of truncation is inevitable to avoid these
pathological paths, but how to perform it “optimally” is still a challenging issue for the discretization
schemes.

In light of all the difficulties of the discretization methods, this paper proposes an innovative simulation
scheme to exactly generate samples for SDEs. The key observation underlying our method is that the
likelihood ratio between the law of the SDE and a standard Brownian motion {Wu, 0 ≤ u ≤ T} is
proportional to exp(−

∫ T

0
φ(Wu)du), where φ is a deterministic function defined explicitly by the SDE’s

coefficients. Using this exponential function as an acceptance-rejection kernel, we establish an exact
simulation algorithm to obtain SDE sample paths from candidates proposed from the Brownian motion.
It is easy to see that the exponential is related to the probability that there are no arrivals occurring in
[0, T ] for a doubly stochastic Poisson process with arrival intensity φ(Wu) at u, 0 ≤ u ≤ T . If φ(·) is
uniformly bounded above, the stochastic thinning, a technique which dates back to the work of Lewis and
Shelder [38], can be applied to generate the Poisson process. Beskos and Roberts [8] propose an exact
simulation algorithm based on this observation.

The major contribution of this paper is to introduce an idea of localization to generalize the Beskos-
Roberts algorithm. The accompanying function φ is not bounded at all in many important financial
applications. Therefore, a significant obstacle remains if we intend to apply the Beskos-Roberts algorithm
to simulate such SDEs. We propose an approach in this paper to break a candidate sample path of the
Brownian motion W into small “local” pieces. Within each piece, the part of W is bounded and hence
φ(Wu) is bounded as long as φ is continuous. The acceptance-rejection is then applicable again to produce
samples for the SDE, piece by piece. Furthermore, our method is readily extensible to simulating the
SDEs with boundaries. When we choose the localization width adaptively as the simulation proceeds,
we can completely avoid the truncation on the boundary. The numerical results show that the empirical
distributions of these models produced by our method perfectly match their theoretical distributions, in
contrast to significant distortions in the discretization schemes. The RMSE of the proposed algorithm
achieves the order of O(t−1/2) because it is exact, which is also confirmed by the numerical experiments
in the paper.

This paper is closely related to the literature of exact simulation of SDEs. Beskos et al. [9], [10] suggest
a layer Brownian motion to relax the bounded assumption to a condition that either lim infx→+∞ φ(x)
or lim infx→−∞ φ(x) is finite. Casella and Roberts [16] discuss how to exactly simulate diffusions killed
at a single boundary. In addition, some authors have made breakthroughs in exact simulations for some
specific SDEs. Broadie and Kaya [13], [14] develop an exact simulation scheme for the affine stochastic
volatility jump diffusions. Glasserman and Kim [26] use gamma expansion in the Broadie-Kaya method
to accelerate the simulation for the Heston stochastic volatility model. Our method is also rooted in the
literature of diffusion sample path decomposition in the probability theory. As noted by Williams [46],
the sample path of a Brownian motion, if the maximum/minimum is given, can be decomposed into two
“back-to-back” Brownian meanders. Imhof [31] shows that we can further express the Brownian meander
as the square root of a sum of three squared independent Brownian bridges. These two facts play an
essential role in the construction of the proposed exact sampling algorithm. To our knowledge, our paper
is the first one to apply these theoretical discoveries to the simulation of SDEs.

The rest of this paper is organized as follows. Section 2 briefly reviews some fundamental results
about the discretization methods of SDE simulation. Sections 3 and 4 review the Beskos-Roberts exact
simulation method and more importantly, our improvement via the localization technique. Section 5
discusses how to extend our method to the SDEs with boundaries and presents some efficiency analysis
on the proposed algorithm. Section 6 is devoted to some numerical experiments. All of the proofs are
deferred to the appendix.

2. SDEs and Discretization Methods. Consider the following one-dimensional SDE:

dXt = µ(Xt)dt + σ(Xt)dWt, X0 = x, (1)
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where {Wt, 0 ≤ t ≤ T} is a standard scalar Brownian motion, and µ and σ are the drift and the volatility
of X, respectively. Both of the drift and the volatility can be state-dependent. This SDE model is used
widely in financial engineering to describe the evolution of asset prices, interest rates and other market
variables. Of interest here is the pricing problem of a derivative security contingent on the dynamic (1).
Assume that the derivative payoff function is given by f(XT ), dependent on the values of X at instance
T . The no-arbitrage arguments yield that the derivative price should be in the form of the following
expectation

u(x) = e−rT E[f(XT )|X0 = x], (2)

if the SDE (1) is assumed to be under the risk neutral probability measure. One minor issue we need
to point out is that the drift of the dynamic (1) should be identical with the risk-free interest rate if we
intend to use it to model the asset price in a risk-neutral world. This case is just a special case in which
the following algorithms works. We consider a broader setting given by a non-constant µ for the interest
of simulation.

The formulation (2) paves a way for the application of the Monte Carlo method in derivative pricing.
Fix a large integer M and let ∆t = T/M . A simple but crude Euler discretization of the SDE (1) is given
by

X̂i = X̂i−1 + µ(X̂i−1)∆t + σ(X̂i−1)∆Wi, (3)

where ∆Wi := Wti −Wti−1 for all ti = i∆t, 1 ≤ i ≤ M . Note that ∆Wi follows a Gaussian distribution
N(0,∆t). We can finish the estimation to (2) in two steps: generate a sequence of ∆Wi’s from N(0,∆t);
substitute them into (3) to obtain X̂i step by step. One straightforward estimate for E[f(XT )] is then
formed by the sample mean

∑N
k=1 f(X̂k

T )/N across all N replications.

There are two types of error associated with this Monte Carlo estimator. One error is caused by the
discretization bias. The literature has established that the weak convergence rate of the Euler scheme is
in the order of 1 under certain proper smooth conditions regarding µ, σ and f . That is, there exists a
constant c such that

|E[f(X̂T )]− E[f(XT )]| ≤ c∆t.

See, for example, Bally and Talay [7], Kloeden and Platen [37], Talay and Turbo [44]. The other error
comes from the statistical fluctuation of the estimator. The central limit theorem implies that, as the
number of replications N tends to +∞, there exists another constant c′ such that

standard deviation ≈ c′√
N

.

The simulation literature usually uses the root of mean-square error (RMSE) to measure the overall
performance of estimators. It is defined as the square root of the sum of squared bias and variance to
take into account the influence of both error sources. From the previous discussion, we know that the
RMSE of the Euler scheme should be √

c2 · (∆t)2 +
c′

N
. (4)

Given a fixed computational budget, the RMSE (4) illustrates a tradeoff facing to the discretization
scheme: increasing the number of time steps helps to reduce ∆t, but it also leads to a lower number
of paths that can be completed. To strike the balance, Duffie and Glynn [21] discuss how to allocate
computational efforts to achieve the best outcome in terms of RMSE. Their result implies that the Euler
scheme can reach O(t−1/3) for a total budget time t if we generate O(t2/3) paths and O(t1/3) steps in each
path. One way to improve the performance of the Euler scheme is to pursue higher order approximations.
Milstein [40] uses the Taylor expansion to reach a scheme with a convergence rate of order 2. This second-
order scheme will improve the optimal RMSE to O(t−2/5). In theory, one may be able to repeat the same
expansion as in the Milstein scheme to derive even higher-order schemes (Kloeden and Platen (1992),
§14.5). As a general conclusion, the optimal RMSE is O(t−β/(2β+1)) for any scheme with a convergence
rate of β if we generate O(t1/(2β+1)) steps within each path and O(t2β/(2β+1)) paths for a fixed time
budget t.

The preceding generic discussion reveals several shortcomings of various discretized estimators. To
achieve higher-order accuracy, the schemes require high-order smoothness on both SDE coefficients and
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the payoff functions, which are not satisfied typically in financial applications. Secondly, regardless of
how high β is, the discretization schemes are all inferior to the order of O(t−1/2), the rate associated
with unbiased estimation. This makes precise the reason why an exact simulation scheme, if possible, is
more preferable. Thirdly, it is very difficult to find the exact magnitude of bias, although we know its
asymptotic order. Therefore, the discretization schemes can hardly yield valid confidence intervals for
their estimates.

As mentioned in the introduction, the discretization methods also meet significant obstacles when
applied to simulating some SDEs with boundaries. For example, consider the following CIR model

dXt = (a− bXt)dt + σ
√

XtdWt, X0 = x, (5)

where a, b > 0. One of the most important characteristics of the model is its non-negativeness, i.e.,
Xt ≥ 0 for all t. When applying the plain Euler scheme, we have

X̂i = X̂i−1 + (a− bX̂i−1)∆t + σ

√
X̂i−1∆Wi. (6)

There is a considerable chance to obtain a negative X̂i because ∆Wi ∼ N(0,∆t), even if we start from
a positive X̂i−1. Such X̂i would be “illegal” when plugged back to the recursion to produce X̂i+1.
Some researchers have proposed various ways to remedy the pathological behavior of the discretization
schemes around the origin. In particular, Deelstra and Delbaen [19], Higham and Mao [30], Berkaoui et
al. [11] and Lord et al. [39] suggest a quick “fix” on the Euler scheme (6) by either setting the process
equal to zero whenever it attains a negative value, or by reflecting it in the origin and continuing from
there on. Alfonsi [3], [4] and Kahl and Jäckel [33] consider an implicit Milstein scheme to preserve the
non-negativeness. Anderson [5] uses a combination of approximations to make his method applicable
to a variety of parameters. All of these methods are prone to distorting the process distribution at the
boundary X = 0 significantly.

It is also worthwhile mentioning another recent development in reducing discretization error. If one
uses a fine time grid, the bias will be very small but the computational cost will be very large. If working
on a coarse grid, the accuracy is much less but the cost is saved. Encouraged by this intuition, Kebaier
[36] proposes the Richard-Romberg extrapolation to generate SDE samples on two levels of time grids,
using a coarser grid to simulate a crude framework and a finer grid to fine tune the bias. This idea is
extended by Giles [24] to multiple grids with different degrees of fineness, instead of just two. The method
shows significant bias reduction and computational cost saving.

3. The Beskos-Roberts Exact Simulation. Instead of simulating an approximate process re-
cursively, the exact simulation method offers an alternative approach to generating the sample paths of
SDEs according to the process law exactly. The basic idea of the exact simulation is based upon the
acceptance-rejection method (ARM), which is among the most applicable approaches to sampling random
numbers (see, e.g., Asmussen and Glynn [6] and Glasserman [25]).

In general, suppose that we wish to generate samples for a random variable Θ with a density f defined
on some set X , which could be a subset of the real line, or a more general set. And we know how
to generate samples for another relatively easier random variable θ with a density g. Assume that the
likelihood ratio of Θ and θ satisfies a property that

f(s)
g(s)

≤ c, s ∈ X

for a constant c. Using ARM, Θ can be drawn in the following two steps:
1. Propose a θ ∼ g and a Bernoulli r.v. I with the probability

P [I = 1|θ] = 1− P [I = 0|θ] =
f(θ)
cg(θ)

;

2. If I = 1, accept θ as a sample for Θ. Otherwise, reject it and return to Step 1.

The time needed to obtain a qualified candidate is random and its expected waiting time equals to c.
In this sense, we prefer to look for a tighter bound c such that fewer candidate samples from g will be
wasted.
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Now, turn back to simulation of the SDE (1). Our intention is to implement ARM on candidates
proposed from a standard Brownian motion WT to obtain XT . Simulation of WT is easy because WT ∼
N(0, T ). The key then becomes to figure out the likelihood ratio between the laws of XT and WT . We
need some technical assumptions to facilitate the search of the likelihood ratio. Let DX = (x, x̄) denote
the domain of X. We will consider two cases, DX = (−∞,+∞) and DX = (0,+∞), in this paper.
The latter one is more relevant in finance because many models of asset prices, interest rates or equity
volatilities should be always positive. We assume that

Assumption 3.1 (Smoothness of the Coefficients) The function µ(x) and σ(x) are infinitely dif-
ferentiable in x for all x ∈ DX .

and

Assumption 3.2 (Non-Degeneracy of the Diffusion) 1. If DX = (−∞,∞), there is a constant
c > 0 such that σ(x) > c for all x ∈ DX ;
2. If DX = (0,∞), limx→0+ σ(x) = 0 and there exist positive constants ξ, k and ρ such that σ(x) ≥ kxρ

for all x ∈ [0, ξ].

Consider the Lamperti transform (see, e.g., Florens [23]) defined as

F (y) =
∫ y

x

1
σ(u)

du

for y ∈ DX , where x is the initial value of the SDE (1). Assumption 3.2 ensures that the transform is well
defined for any y ∈ DX . Furthermore, F is a strictly increasing function because σ(·) > 0. Transform
X into another process Y defined as Yt := F (Xt). Ito’s lemma implies that Y must satisfy the following
SDE:

dYt = α(Yt)dt + dWt, Y0 = 0, (7)

where α is given by

α(y) =
µ(F−1(y))
σ(F−1(y))

− 1
2
σ′(F−1(y)).

The monotonicity of the transform F makes sure that simulating XT is equivalent to simulating YT . We
can recover XT by the relationship XT = F−1(YT ) once we have samples for YT , where F−1 is the inverse
to F .

Denote y = limx→x+ F (y) and ȳ = limx→x̄− F (y). The Lamperti transform maps DX into DY = (y, ȳ),
the domain of Y . When DX = (−∞,+∞), it is easy to check that DY = (−∞,+∞) because σ(·) > c > 0
in this case according to Assumption 3.1. The situation for DX = (0,+∞) is more complicated. The
following three examples interest us especially:

• DY can be (−∞,∞). For instance, consider the Black-Scholes model,

dXt = µXtdt + σXtdt, X0 = x.

Its Lamperti transform is given by

F (y) =
1
σ

ln
(y

x

)
,

which maps DX into DY = (−∞,+∞).
• DY can be (y,+∞) where y > −∞. The aforementioned CIR model (5) falls in this category.

Under the transform

F (y) =
2(
√

y −
√

x)
σ

,

the transformed process Y is valued in a range

DY =
(
−2

√
x

σ
,+∞

)
.
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• DY can be (−∞, ȳ) where ȳ < +∞. Chan et al. [17] suggest the following linear-drift CEV-
type-diffusion model to fit the short-term interest rate in the United States: for γ > 1,

dXt = (a− bXt)dt + σXγ
t dWt, X0 = x (8)

The process X is distributed on (0,+∞) for a, b > 0 and γ > 1/2. With the Lamperti transform

F (y) = − 1
σ(γ − 1)

(
1

yγ−1
− 1

xγ−1

)
,

the value range of the transformed process Y for this model is

DY =
(
−∞,

1
σ(γ − 1)xγ−1

)
.

To guarantee the existence and uniqueness of the solution to (7), we need an additional assumption to
prevent Y from “exploding” (i.e., reaching the boundaries) in finite time. This prevention is necessary
from the perspective of financial modeling. As a sensible model for a market variable, X can rarely, if
at all, reach ±∞ or 0 in finite time. The economic literature mentions very little about how the process
would behave after the boundaries are hit. Meanwhile, the treatment of the boundary behavior of X
will significantly complicate the simulation itself. Different specifications of boundary behavior will lead
to different solutions to the SDE, which would totally destroy the uniqueness of the solution (see, e.g.
Karlin and Taylor [34, §15.8]). To avoid the complexity of the boundary issue, we introduce

Assumption 3.3 (Boundary Behavior) 1. Left boundary: If y > −∞, there are constants ε, κ and β

such that α(y) ≥ κ(y − y)−β for y < y < y + ε, where either κ > 0 and β > 1 or κ ≥ 1 and β = 1. If
y = −∞, there exist positive constants B and K such that α(y) ≥ Ky for all y < −B.

2. Right boundary: If ȳ < +∞, there exist constants ε, κ and β such that α(y) ≤ −κ(ȳ − y)−β

for ȳ − ε < y < ȳ, where either κ > 0 and β > 1 or κ ≥ 1/2 and β = 1. If ȳ = +∞, there exist positive
constants B and K such that α(y) ≤ Ky for all y > B.

The transformed process does not hit the boundary under the above assumptions, which put limits on
the rates of the process drift when it approaches the boundaries. For instance, when DY = (−∞,+∞)
and Y is sufficiently large (i.e., it approaches +∞), Assumption 3.3 imposes a requirement that the drift
grows sub-linearly, which will make the boundary of +∞ unattainable. When DY = (y,+∞) and Y is
near the left boundary y, the drift is assumed to be a positive number larger than κ(y − y)−β , which
pushes Y away from y. In this way we can rule out the possibility that the process explodes in a finite
time horizon. Under Assumptions 3.1-3.3, Aı̈t-Sahalia [2] shows that the SDE (7) admits a weak solution
{Yt, t ≥ 0}, unique in probability law for every initial value Y0 and furthermore P [TY = ∞] = 1, where
TY = inf{t ≥ 0 : Yt /∈ (y, ȳ)}, the first time that Y moves beyond DY . Although all of the assumptions
impose restrictions in terms of Y , it is easy to check whether they hold with the process X.

The advantage of introducing Y is that we are able to write down an explicit expression for the
likelihood ratio of YT with respect to WT . Beskos and Roberts [8] focus on the case of DY = (−∞,+∞)
and show the following proposition:

Proposition 3.1 Suppose that α satisfies:

E

[
exp

(
1
2

∫ T

0

α2(Wt)dt

)]
< +∞. (9)

Then the density of YT is given by

fYT
(y) =

1√
2πT

exp
(

A(y)− y2

2T

)
· E

[
exp

(
−
∫ T

0

φ(Wu)du

)
| WT = y

]
,

where

A(y) =
∫ y

0

α(u)du and φ(y) =
α′(y) + α2(y)

2
.



Chen and Huang: Exact Simulation of SDEs
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©201x INFORMS 7

To facilitate the application of ARM, they further introduce an assumption that A satisfies

C :=
∫ +∞

−∞
exp

(
A(y)− y2

2T

)
dy < +∞. (10)

If that is true, a new probability density function can be defined as follows:

h(y) :=
1
C

exp
(

A(y)− y2

2T

)
.

By Proposition 3.1, the likelihood ratio of fYT
with respect to h should be

fYT
(y)

h(y)
=

C√
2πT

E

[
exp

(
−
∫ T

0

φ(Wu)du

)
| WT = y

]
.

To construct the Bernoulli I, note that

exp

(
−
∫ T

0

φ(Wu)du

)
equals the probability of the event that there are no arrivals occurring within [0, T ] for a doubly stochastic
Poisson process with the intensity φ(Wu) at u, 0 ≤ u ≤ T . Therefore, we accomplish the job if define I
as the indicator of such event. More specifically, suppose that there exists a constant K such that

0 ≤ φ(x) < K for all x ∈ (−∞,+∞). (11)

Lewis and Shedler [38] propose a technique of stochastic thinning to generate arrivals for doubly stochastic
Poisson processes from a homogeneous one with a stronger intensity. Sampling Poisson events with
intensity K in [0, T ] to obtain a set of arrival times {0 < τ1 < · · · < τN < T}. For each τi, draw a
uniform Ui ∼ U(0, 1). Retain τi if Ui ≤ φ(Wτi

)/K and erase it otherwise. Let I = 1 if there is no arrival
left eventually after N retaining-or-erasing tests and I = 0 if there are some. It is easy to see that this I
is what we desire.

The values of Wτi
must be known to conduct the retaining-or-erasing tests. As WT is already fixed at

y, this is equivalent to sampling from a Brownian bridge. Its simulation is also standard in the literature;
we provide a brief overview of the procedure in Appendix A. In summary, the Beskos-Roberts exact
algorithm simulates YT through the following six steps:

The Beskos-Roberts Exact Simulation

1. Propose a candidate H ∼ h.
2. Simulate a homogeneous Poisson process with the intensity K and denote τ1, · · · , τN to be
all Poisson arrivals in [0, T ].
3. If N = 0, let I = 1 and goto step 6; otherwise, evaluate Wτ1 , · · · ,WτN

, given WT = H,
using the simulation of Brownian bridges.
4. Generate Ui ∼ U(0, 1) for each τi. Retain τi if Ui ≤ φ(Wτi

)/K; otherwise, erase it.
5. Define I = 1 if there are no arrivals left in [0, T ] and I = 0 otherwise.
6. Accept the proposed H if I = 1 and reject it if I = 0.

Recall that several conditions are indispensable to this algorithm: the Novikov’s condition (9), the integra-
bility assumption of exp(A(y)− y2/2T ), (10), and the uniform bounded assumption of φ, (11). However,
many SDEs popularly used in financial engineering do not satisfy these conditions. This motivates our
work to extend the algorithm.

4. Main Result: A Localization Technique. This section presents our improvement to generalize
the above exact simulation method, aiming at the financial applications. The key idea is to use a technique
of localization, i.e., breaking sample paths of a Brownian motion into small bounded pieces. We illustrate
the method using the case of DY = (−∞,∞) in this section. We also find that this approach is potentially
applicable for the cases of DY = (y,∞) and DY = (y,∞). The relevant discussion is deferred to the next
section.
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Before proceeding to a detailed technical presentation of our method, we demonstrate the intuition
behind the improvement first. Fix a positive constant L and introduce a sequence of first passage times:

ζ1 = inf{t ≥ 0 : |Yt| ≥ L} and ζi = inf{t ≥ 0 : |Yt − Yζi−1 | ≥ L}, i ≥ 1.

In words, ζ1 is the first time that Y leaves the band of [−L,L] and ζi is the first time Yt − Yζi−1 , the
process increment after ζi−1, leaves [−L,L]. Instead of simulating YT in one shot as in the last section,

Figure 1: First passage time ζi “localizes” Y into bounded pieces [ζi, ζi+1]. For instance, {Yu, 0 ≤ u ≤ ζ1}
is bounded in [−L,L], {Yu, ζ1 ≤ u ≤ ζ2} is in [−2L, 0] and so on.

we generate (ζi, Yζi
) sequentially up to T . More specifically, given (ζi−1, Yζi−1), when ζi−1 < T , we shall

generate two random variables such that

∆ζi := ζi − ζi−1 and ∆Yi := Y(ζi−1+∆ζi)∧T − Yζi−1 .

If ∆ζi < T − ζi−1, update ζi := ζi−1 + ∆ζi, Yζi
:= Yζi−1 + ∆Yi, and we then reach the next pair of

(ζi, Yζi
). If ∆ζi > T − ζi−1, stop the algorithm by evaluating YT := Yζi−1 + ∆Yi. Figure 1 visualizes how

the above procedure runs.

The sequence of (ζi, Yζi) “localizes” the sample paths of Y into bounded pieces. Consider the piece
of Y in [0, ζ1]. The value of increment ∆Y1 should be bounded between [−L,L] by the definition of ζ1.
Denote ς = inf{t ≥ 0 : |Wt| ≥ L}. Theorem 4.1 states that the likelihood ratio of (∆ζ1,∆Y1) with respect
to (ς,Wς) is proportional to

E

[
exp

(
−
∫ ς

0

φ(Wu)du

) ∣∣∣ς,Wς

]
.

Note that, prior to ς, the path of W should be bounded in [−L, L]. The continuity of the function φ is
good enough to make sure both of miny∈[−L,L] φ(y) and maxy∈[−L,L] φ(y) are finite. Hence φ(Wu) will
be sandwiched between these two:

min
y∈[−L,L]

φ(y) ≤ φ(Wu) ≤ max
y∈[−L,L]

φ(y), for u ≤ ς.

This observation allows us to find the intensity for the homogeneous Poisson process used in ARM
to generate (∆ζ1,∆Y1) from the standard Brownian motion candidates (ς,Wς). It is clear to see the
advantage of localization from the preceding discussion: we need only the continuity of φ to make the
algorithm feasible, which is much weaker than the conditions imposed by the Beskos-Roberts algorithm
and satisfied by many SDEs with financial applications. Given (ζ1, Yζ1), the law of the increment {Yt −
Yζ1 , t ≥ ζ1} is independent of the part before ζ1, thanks to the Markov property of Y . We then repeat
the same approach to generate (∆ζ2,∆Y2). The whole procedure stops until YT is reached.
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The following theorem lays out the theoretical foundation of our localization algorithm. It represents
the likelihood ratio (more rigorously, the Radon-Nikodym derivative) of the joint distribution function of
(∆ζi,∆Yi) in terms of the standard Brownian motion. Note that we successfully drop off the Novikov’s
condition (9) from it.

Theorem 4.1 Suppose Assumptions 3.1-3.3 are satisfied. Given Yζi−1 = x, ζi−1 = t, the Radon-Nikodym
derivative of the law of (∆ζi,∆Yi) with respect to that of (ς,Wς∧(T−t)) is given by

P [∆ζi ∈ ds, ∆Yi ∈ dy|Yζi−1 = x, ζi−1 = t]
P [ς ∈ ds, Wς∧(T−t) ∈ dy]

= exp(−A(x)) · exp(A(x + y)) · E

[
exp

(
−
∫ s∧(T−t)

0

φ(x + Wu)du

)∣∣∣ς = s,Wς∧(T−t) = y

]
.

Based on this theorem, we present the following algorithm to generate (ζi, Yζi
) from a given pair of

(ζi−1, Yζi−1) = (t, x).

Localization Algorithm in a Nutshell

1. Propose (ς,Wς∧(T−t)) from a standard Brownian motion.
2. Simulate an indicator binomial r.v. I whose distribution satisfies

P [I = 1] = 1− P [I = 0] ∝ exp(A(x + Wς∧(T−t))) · E

[
exp

(
−
∫ ς∧(T−t)

0

φ(x + Wu)du

)∣∣∣ς,Wς∧(T−t)

]
3. If I = 1, let ∆ζi = ς and ∆Yi = Wς∧(T−t). Otherwise, go to Step 1.
4. If ∆ζi < T − t, update

ζi := ζi−1 + ∆ζi, Yζi
:= Yζi−1 + ∆Yi.

Go to step 1 to restart the algorithm.
5. If ∆ζi > T − t, stop the algorithm and output

YT := Yζi−1 + ∆Yi.

Now we shall specify the implementation details for each step of the preceding localization algorithm.
Subsections 4.1 and 4.2 are devoted to Step 1 and Subsection 4.3 focuses how to generate the Bernoulli
I as required by Step 2. In all of these three steps, we need to compare a number with an infinite sum.
A special structure of the sums lends an efficient comparison method. We present the related discussion
in Subsection 4.4.

4.1 Sampling of ς. Denote ς1 = inf{t ≥ 0 : |Wt| = 1}. The self-similarity property of the standard
Brownian motion implies that {LWt/L2 , t ≥ 0} is identical with {Wt, t ≥ 0} in distribution (Karatzas
and Shreve [35, Lemma 2.9.4]). Therefore, the sampling of ς can be accomplished by letting ς := L2ς1 if
we know how to obtain ς1.

The probability density function of ς1 is known explicitly through the following infinite series:

gς1(t) =
1√
2πt3

e−
1
2t +

∞∑
j=1

(−1)j

√
2πt3

[
(2j + 1) exp

(
− (2j + 1)2

2t

)
− (2j − 1) exp

(
− (2j − 1)2

2t

)]
(12)

(Karatzas and Shreve [35, Exercise 2.8.11]). Burq and Jones [15] obeserve that the right hand side of
(12) is bounded above by a Gamma distribution density. More specifically, there must exist constants
a, b, λ such that

gς1(t) ≤ ag(t; b, λ) := a · λbtb−1e−λt

Γ(b)

for all t > 0, where

Γ(b) =
∫ +∞

0

tb−1e−tdt.
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They also recommend that the optimal choices for the parameters should be a = 1.243707, b = 1.088870,
and λ = 1.233701 via some numerical experiments.

Based on this fact, we can use ARM to obtain samples of ς1. Keep generating U ∼ U(0, 1) and
V ∼ Gamma(b, λ); accept ς1 = V until

U <
gς1(V )

ag(V ; b, λ)
. (13)

The exact evaluation of gς1(V ) is impossible because it involves with an infinite sum. However, we still
can conduct the comparison in (13) exactly due to a special structure of the summation. This will be
illustrated in Section 4.4. Burq and Jones [15] prove that the expected number of operations to simulate
one sample of ς1 is finite.

4.2 Sampling of Wς∧(T −t). Given ς < T − t, sampling Wς∧(T−t) is equivalent to sampling Wς .
Note that

P [Wς = L] = P [Wς = −L] =
1
2

(14)

by the symmetric property of Brownian motion. We can easily generate Wς∧(T−t) in this case from the
observation 14.

Now, consider the simulation of Wς∧(T−t) if we get T − t < ς, or more generally, generating the values
of W at a sequence of instances: 0 < t1 < · · · < tn < ς. Thanks to the self-similarity property of the
standard Brownian motion again, we focus our attention on the case when L = 1 only. It is easy to
obtain the samples for a general L if we note that the following relationship holds:

(Wt1 , · · ·Wtn
|ς,Wς)

d= L · (Wt1/L2 , · · ·Wtn/L2 |ς1,Wς1).

Given ς1 and Wς1 , the law of (Wt, 0 ≤ t < ς1) turns out to be related to Brownian bridges too. Without
loss of generality, assume that Wς1 = −1 first. The Brownian motion W achieves its minimum in [0, ς1]
at ς1. A well-known result in probability theory — the Williams path decomposition, named after the
work of Williams [46] — states that the part of a standard Brownian motion prior to its minimum should
behave like a time-reverse Brownian meander. Moreover, as noted by Imhof [31], a Brownian meander
can be further decomposed into three independent Brownian bridges. A symmetric observation applies
for the case when Wς1 = 1. More formally, we introduce a new process such that, for t ≤ ς1,

W̃t :=
{

1−Wς1−t, if Wς1 = 1;
1 + Wς1−t, if Wς1 = −1.

(15)

Denote Bi
t, i = 1, 2, 3, to be three independent Brownian bridges from 0 to 0 on [0, ς1]. Let

B̃t :=
√

(t/ς1 + B1
ς1−t)2 + (B2

ς1−t)2 + (B3
ς1−t)2. (16)

The following theorem shows the explicit form of the likelihood ratio of W̃ with respect to B̃.

Theorem 4.2 Let yn+1 = 1. For any 0 = t0 < t1 < · · · < tn < tn+1 = ς1 and y1, · · · , yn > 0, the joint
conditional distribution of (W̃t1 , · · · W̃tn) has the following likelihood ratio with respect to (B̃t1 , · · · B̃tn):

P [W̃t1 ∈ dy1, · · · , W̃tn
∈ dyn|ς1,Wς1 ]

P [B̃t1 ∈ dy1, · · · , B̃tn ∈ dyn]
= c

n∏
i=1

p(ti, yi; ti+1, yi+1) · q(t1, y1) · 1{yi∈(0,2)}.

where the constant c = 1/P [max0≤t≤ς1 B̃t ≤ 2]. Both functions p and q are nonnegative and are bounded
above by 1. They both admit closed-form expressions. For any 0 < s < t < ς1 and x, y ∈ (0, 2),

p(s, x; t, y) =
1−

∑+∞
j=1(θj − ϑj)

1− exp(−2xy/(t− s))
,

where

θj(s, x; t, y) = exp
(
−2(2j − x)(2j − y)

t− s

)
+ exp

(
−2(2(j − 1) + x)(2(j − 1) + y)

t− s

)
,

ϑj(s, x; t, y) = exp
(
−2j(4j + 2(x− y))

t− s

)
+ exp

(
−2j(4j − 2(x− y))

t− s

)
.
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And

q(s, x) = 1− 1
x

+∞∑
j=1

(ρj − %j),

where

ρj(s, x) = (4j − x) exp
(
−4j(2j − x)

s

)
, %j(s, x) = (4j + x) exp

(
−4j(2j + x)

s

)
.

We can use Theorem 4.2 to produce samples of (Wt1 , · · · ,Wtn
), conditioning on ς1 and Wς1 , in the

following steps:

Generating (Wt1 , · · · ,Wtn
) When ς1 and Wς1 Are Given

1. Generate Brownian bridges (Bi
t1 , · · · , Bi

tn
) for i = 1, 2, 3.

2. Use (16) to construct (B̃ς1−tn
, · · · , B̃ς1−t1).

3. Generate n + 1 uniforms Uj ∼ U(0, 1), 0 ≤ j ≤ n.
4. Accept (B̃ς1−tn

, · · · , B̃ς1−t1) as a sample of (W̃ς1−tn
, · · · , W̃ς1−t1) when B̃ς1−tj

< 2,

U0 < q(ς1 − tn, B̃ς1−tn
) and Uj < p(ς1 − tj , B̃ς1−tj

; ς1 − tj+1, B̃ς1−tj+1) (17)

for 1 ≤ j ≤ n.
5. Obtain (Wt1 , · · · ,Wtn

) from (W̃ς1−tn
, · · · , W̃ς1−t1) by (15).

Note that we also have to deal with comparisons involving infinite sums in (17). Like (13), exact evaluation
of the infinite sums in functions p and q can be avoided if we take advantage of a special structure of
these sums. The detailed discussion is in Section 4.4.

4.3 Sampling of the Bernoulli I. Once we have (ς,Wς∧(T−t)), we need a Bernoulli I to decide
whether or not to accept this proposed candidate pair. The indicator I should satisfy

P [I = 1|ς,Wς∧(T−t)] ∝ exp(A(x + Wς∧(T−t))) · E

[
exp

(
−
∫ ς∧(T−t)

0

φ(x + Wu)du

)∣∣∣ς,Wς∧(T−t)

]
.

As illustrated at the beginning of this section, introduction of the stopping time ς enables us to use the
idea of stochastic thinning to accomplish this task. By the definition of ς, we know Wu ∈ [−L,L] for all
0 ≤ u ≤ ς. Define

m := min
y∈[−L,L]

φ(x + y), M := max
y∈[−L,L]

φ(x + y) and Γ = max
y∈[−L,L]

exp(A(x + y)).

Theorem 4.3 shows that we can obtain such I if we go through the following steps:

Sampling of the Bernoulli I

1. Simulate a homogeneous Poisson process with intensity M −m to obtain arrivals

0 ≤ τ1 < τ2 < · · · < τN ≤ (T − t) ∧ ς.

2. Use the method presented in Section 4.2 to generate (Wτ1 , · · · ,WτN
) and meanwhile simulate

N + 1 uniforms Uj ∼ U(0, 1), 0 ≤ j ≤ N and another independent uniform V ∼ U(0, 1).
3. Let I = 1 if and only if the following three inequalities hold simultaneously:

U0 ≤
exp(A(x + W(T−t)∧ς))

Γ
, Uj <

M − φ(x + Wτj
)

M −m
, and V ≤ exp(−m((T − t) ∧ ς))

max(1, exp(−m(T − t)))

for all 1 ≤ j ≤ N .

Theorem 4.3 The Bernoulli I obtained through the above three-step procedure satisfies

P [I = 1|ς,Wς∧(T−t)] =
exp(A(x + Wς∧(T−t)))

Γ max(1, exp(−m(T − t)))
· E

[
exp

(
−
∫ ς∧(T−t)

0

φ(x + Wu)du

)
| ς,Wς∧(T−t)

]
.
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Figure 2: The sequence {ai} oscillates around its limit a. b1 < a iff b1 < ai+1 < ai for some i; b2 > a iff
b2 > ai+1 > ai for some i.

From this theorem, we can argue for the validity of the localization method as follows. By Theorems 4.1
and 4.3, we have

P [I = 1|ς = s,Wς∧(T−t) = y] =
P [∆ζi ∈ ds, ∆Yi ∈ dy|Yζi−1 = x, ζi−1 = t]

cP [ς ∈ ds, Wς∧(T−t) ∈ dy]
,

where c is a constant given by

c = exp( max
y∈[−L,L]

A(x + y)−A(x)) ·max(1, exp(−m(T − t))).

The general principle of ARM in Section 3 implies that our method will generate exact samples of
(∆ζi,∆Yi).

4.4 Comparison Involving Infinite Sums. At several points in the previous subsections, we have
to compare a number and an infinite sum (cf. (13) and (17)). One special structure of the sums turns
out to be very useful for constructing an efficient method without exactly valuing these infinite sums.
They are all oscillating in the sense of the following definition:

Definition 4.1 A sequence of numbers {ai, i ≥ 1} is called to be oscillating if there exists a positive
integer N such that for i ≥ N ,

0 < −ai+1 − ai

ai − ai−1
< 1.

Suppose that the limit of an oscillating sequence {ai, i ≥ 1} exists and is equal to a. We are willing to
compare a with another number b. As illustrated in Figure 2, we have

ai < ai+1 < b ⇒ a < b, and ai > ai+1 > b ⇒ a > b (18)

for some i. From this fact, we can easily see that, as long as a 6= b, the comparison of a and b can be
finished in finite steps of calculation and without knowing the exact value of a. Both comparisons (13)
and (17) involve summations of oscillating series. Let

gJ(t) :=
1√
2πt3

e−
1
2t +

J∑
j=1

(−1)j

√
2πt3

[
(2j + 1) exp

(
− (2j + 1)2

2t

)
− (2j − 1) exp

(
− (2j − 1)2

2t

)]
.

Define

p2J(s, x; t, y) =
J∑

j=1

(θj − ϑj), p2J+1(s, x; t, y) = p2J(s, x; t, y) + θJ+1

and

q2J(s, x) =
J∑

j=1

(ρj − %j), q2J+1(s, x) = q2J(s, x) + ρJ+1

for all J ≥ 1. Appendix C verifies that all of these three sequences are actually oscillating and their limits
exist such that

lim
J→+∞

gJ(t) = gς1(t), lim
J→+∞

pJ(s, x; t, y) = p∞(s, x; t, y), and lim
J→+∞

qJ(s, x) = q∞(s, x).

Exploiting the oscillation property, the following proposition shows that we can finish the comparison
between a number and q(s, x) in finite steps. A similar result holds for the other two sequences. We skip
the detailed discussion for the interest of space.
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Proposition 4.1 Given U ∈ U(0, 1), s > 0, and x ∈ (0, 2), suppose that N is a minimal integer such
that

N >
(log 4)s

8
1
x

+ 2 and 6(N + 1) exp(−8N2/s) < |x(1− U)− q∞(s, x)|.

Then, at most 2N terms, {q1(s, x), · · · , q2N (s, x)}, need to be calculated before finishing the comparison
between U and q(s, x).

For any given ς1, B̃ς1−tn , and U , the preceding proposition indicates apparently that we do not need
to evaluate the exact value of q∞(ς1− tn, B̃ς1−tn

) in order to perform the comparison in (17). The partial
sum of the first 2N terms of the sequence of {qJ} is sufficient for us to make a judgement. Clearly,
Proposition 4.1 also implies that N tends to +∞ when ς1 is extremely large or B̃ς1−tn

is very close to
0. However, we can prove that the probabilities of both events are negligible. In conjunction with this
observation, the expected number of operations to finish the comparisons in (13) and (17) is shown to be
finite. We skip the detailed proof of this conclusion in this paper.

The above method can be regarded as an application of the alternating series algorithm in the sim-
ulation literature, a general method to simulate non-uniform random variables (see, e.g., Devroye [22,
§IV.5]). The method is to deal with simulation of a random number with a density function f that can
be approximated from above and below by sequences of functions fn and gn. In particular, assume that
(i) limn→+∞ fn = f and limn→+∞ gn = f ; (ii) fn ≤ f ≤ gn; (iii) f ≤ ch for a constant c ≥ 1 and an
easy density h. The alternating series algorithm suggests that we can generate such random variable
X through ARM. In our setting, the oscillating property helps us easily find the squeezing sequences to
bound gς1 , p∞, and q∞ from above and from below. For instance, q∞ is sandwiched by the sequences of
{q2J} and {q2J+1}.

5. Discussions. We discuss the efficiency of our exact simulation and its possible extension to those
SDEs with boundaries in this section. Our aim is not to present here a complete analysis, which is left
for future exploration, but to raise some general advices on the algorithm implementation.

5.1 One Extension: SDEs with Boundaries In Section 4, we fix the localization parameter L
for the whole simulation procedure. This fixation is not critical at all for the feasibility of our algorithm.
Thanks to the Markovian property of the SDE (7), we may use different Li in simulating different
(∆ζi,∆Yi). Such adaptive selection of L is very appealing in simulating SDEs with boundaries such as
the CIR model (1). Consider a process Y with the range DY = (y,+∞) for a finite y. As shown by the
numerical examples in Section 6, the function φ(y) will diverge to ∞ as y ↓ y for many SDEs with such
kind of DY . This makes it difficult to find a uniformly stronger intensity for the homogeneous Poisson
process if we run the Besko-Roberts exact simulation scheme.

However, we can still use the localization idea to circumvent the obstacle. Rather than sticking to a
fixed constant L to do the job over time, we change it adaptively as the generation of (ζi, Yζi) proceeds.
Figure 3 illustrates the procedure with an adaptive localization scheme. Start with an L1 such that
−L1 > y. Use the same technique presented in Section 4 to obtain (ζ1, Yζ1). When Yζ1 = −L1, the
localization width L1 is not suitable any more for generating (ζ2, Yζ2) because such choice would lead to
a possibility that Yζ2 = Yζ1 − L1 = −2L1 < y, which is shown to be impossible by the unattainability
of y. Applying the idea of adaptive localization, we may replace L1 by a smaller L2 to ensure that
−L1 − L2 > y to keep the simulated process away from the boundary. Continue the procedure until
we reach time T . How to find an optimal rule of change-of-L to achieve the best performance of such
extension is left for future investigation. In the numerical experiments in Section 6, we use a very simple
rule such that update Li+1 = (Yζi

− y)/2 for the generation of Yζi+1 , after simulating Yζi
. This rule of

thumb performs very well in the experiments.

5.2 Simulation Efficiency. Our localization algorithm demonstrates a nested structure: the inner
loop generates candidate pairs of (ς,Wς∧(T−t)) and the Bernoulli I using the ARM schemes introduced
in Subsections 4.1 and 4.2; the outer loop decides whether or not accept the proposed candidates of
(ς,Wς∧(T−t)) as an output of (∆ζ, ∆Y ). The efficiency of this algorithm is determined by how fast this
nested ARM scheme can be accomplished.

Let us focus on the inner loop first. By Burq and Jones [15], we know that we can generate one sample
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Figure 3: Barrier L can be adjusted adaptively in the simulation of an SDE with DY = (y,+∞). This
figure shows that we change to a smaller L2 when Y approaches to the boundary y.

of ς in finite steps. To analyze the computational cost for generating Wς∧(T−t) and I, observe that
the bottleneck is the ARM scheme that we use to produce the intermediate variables {W̃τ1 , · · · , W̃τN

}.
Theorem 4.2 indicates that the expected number of trials needed to generate a qualified set of W̃τi

’s
equals 1/P [max0≤t≤ς1 B̃t ≤ 2]. Within each trial, the required computational cost is proportional to how
many τi’s are simulated by the homogeneous Poisson process in the algorithm of sampling I in Subsection
4.3. Therefore, the expectation of the total computational cost to simulate Wς∧(T−t) and I should be
proportional to

(T − t)(M −m) · 1

P [max0≤t≤ς1 B̃t ≤ 2]
,

where M − m is the intensity of the homogeneous Poisson process and (T − t)(M − m) is the average
number of τi’s. The proof of Theorem 4.2 shows that P [max0≤t≤ς1 B̃t ≤ 2] = q(ς1, 1). Some numerical
experiments we conduct point out that E[1/q(ς1, 1)] = 1.5425. Therefore, the efficiency of the inner loop
is determined mainly by the value of M −m, or in other words, the fluctuation magnitude of φ in the
interval [x − L, x + L]. Assumptions 3.1-3.3 ensure that the function φ is locally Lipschitz and thus we
expect a finite computational cost for the inner loop.

We then proceed to discuss the efficiency of the outer loop. According to Theorem 4.1, on average, we
need to repeat 1/P [I = 1] inner loops to generate a qualified pair of (∆ζ, ∆Y ). Note that

P [I = 1|Wς∧(T−t), ς] ≥ exp{−[ max
y∈[−L,L]

A(x + y)− min
y∈[−L,L]

A(x + y)]} · exp{−M(T − t)}
max(1, exp{−m(T − t)})

. (19)

Therefore, as long as functions A and φ do not fluctuate too much in the interval [x−L, x+L], the right
hand side of (19) will have a uniform lower bound and it implies that the number of inner loops needed
is expected to be finite. Combining with the fact that the average computational cost in each inner loop
is finite, we conclude that our localization algorithm will finish the simulation of one pair of (∆ζ, ∆Y ) in
finite operations. The preceding discussion also points out that two quantities,

max
y∈[−L,L]

A(x + y)− min
y∈[−L,L]

A(x + y) and max
y∈[−L,L]

φ(x + y)− min
y∈[−L,L]

φ(x + y)

play an important role in determining how fast the whole procedure will be: smaller values for both
differences lead to faster execution of the algorithm.

Finally, we show that, for any SDE satisfying Assumptions 3.1-3.3, the localization algorithm presented
in Section 4 needs only finite (∆ζ, ∆Y ) in Step 4 to reach YT .

Theorem 5.1 Assume that Assumptions 3.1-3.3 are satisfied. Let J = inf{j :
∑j

i=1 ∆ζi > T}. Then,
J < +∞ almost surely.
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Note that the discussion before Theorem 5.1 indicates that the computational effort is finite for generating
each update of (∆ζ, ∆Y ). In conjunction with this theorem, we finish the efficiency analysis to claim
that the localization algorithm will generate samples of YT with finite number of operations.

The above discussion does not exclude the possibility that we may need to wait for a very long time to
obtain one sample of YT , although the time is shown to be finite by Theorem 5.1. Recall that the required
computational time in our rejection-based sampling method is correlated with the values of proposed
candidates. Particularly, we change the localization width L in the extension presented in Subsection 5.1
as the simulation proceeds. When the simulated process Yζi

approaches the lower boundary y in Figure
3, a small L will be used and that may “trap” our simulation around y for a long time before it reaches
T . Sometimes, such long waiting time would lead to another potential source of bias: users may have no
patience to wait until the final result comes out and abort the algorithm at an early stage. It is referred
to as the “user-impatience bias” commonly in the literature of perfect simulation; see Propp and Wilson
[43]. The numerical experiments in the next section illustrate that the impact of such bias is limited. We
leave further investigation in this direction for future research.

Another possible direction for future research is to explore the effect of L on the efficiency. On the one
hand, a larger L will leads to a larger first-passage time ς, and in turn, smaller amount of intermediate
steps to reach the target time T . On the other hand, we need to simulate more Wτi ’s to preform ARM if
L is larger. In light of this trade-off, an appropriate choice of L will yield the best performance in terms
of computational time, although the sampling under any L is exact according to Section 4. One may run
small-scale pilot experiments to obtain the optimal L empirically.

6. Numerical Examples. In the section, we present some numerical results of the exact simulation
on four models: the Ornstein-Uhlenbeck (OU) mean-reverting process, a double-well potential model, the
Cox-Ingersoll-Ross square root process, and the linear-drift CEV-type-diffusion model. The former two
models have ranges DX = (−∞,∞) and the last two DX = (0,+∞).

6.1 Ornstein-Uhlenbeck Mean-Reverting Process Consider an Ornstein-Uhlenbeck process

dSt = −bStdt + dWt, 0 < t < T

with b is a positive constant. Note that the drift is positive when St < 0 and negative when St > 0.
Thus, S is pulled toward level 0, a property generally referred to as mean reversion. A variation of this
model is used by Vasicek [45] to model short rates in the interest market. The marginal distribution of
ST is normal with mean S0 exp(−bT ) and variance (1− exp(−2bT ))/2b. It is easy to see that we do not
need perform the Lamperti transform for this process because its diffusion coefficient is already a unit.
In addition, α(S) = −bS, φ(S) = ((bS)2 − b)/2, and A(S) = −bS2/2. The function φ has a lower bound
−b/2 but does not have a uniform upper bound.

Table 1 demonstrates a comparison of the exact simulation and the Euler discretization scheme for a
particular case when T = 1, b = 1, and S0 = 0. Here, we estimate E[S2

T ] using the sample averages and

Euler Scheme Exact Simulation
Sample Step Estimation RMSE RV Simulated Sample Estimation RMSE RV Simulated

400 16 0.4571 0.0408 6400 65 0.4594 0.0632 3018
1600 32 0.4434 0.0173 51200 520 0.4334 0.0274 24905
6400 64 0.4359 0.0095 409600 4200 0.4349 0.0097 201974
25600 128 0.4353 0.0040 3276800 33600 0.4324 0.0031 1607682

Avg. reduction 0.475 0.363

Table 1: A numerical comparison of the Euler scheme and exact simulation in an OU Process. The RMSE is calculated

on the basis of 100 trials. The reduction factor is defined as a ratio of the RMSEs of two consecutive rows. The columns

of RV Simulated records how many random variables are generated to obtain the corresponding RMSE.

calculate its error with respect to the true value (1 − exp(−2))/2 = 0.4323. The first 5 columns show
the results of the Euler scheme. To improve the precision of the estimation, more computational effort
is needed to increase the number of time steps within each path and the total number of sample paths
simultaneously. Following the Duffie-Glynn rule, we need to double the number of time steps (Column
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2) and quadruple the total number of simulated paths (Column 1) at the same time. The total work
load therefore increases by eight times from one row to the next, which is reflected in Column 5, the
total number of random variables needed to simulate. The level of RMSE (Column 4) shrinks by a
factor of almost 1/2. This is consistent with the conclusion of Duffie and Glynn [21] that the optimal
RMSE for the Euler schemes is in the order of O(t−1/3) if we generate O(t1/3) time steps in each sample
path and O(t2/3) paths. The last four columns display the results from our exact simulation method.
It is obvious that the RMSE decreases by a factor of almost 8−1/2 = 0.354 as the number of generated
samples increases by eight times since our method is unbiased. The proposed algorithm achieves the
order of O(t−1/2), the optimal convergence rate of RMSE for Monte Carlo simulation.

Figure 4 is the empirical density of ST obtained from our exact simulation. It coincides with the
theoretical density of ST perfectly after 1 million sampling. The Kolmogorov-Smirnov goodness-of-fit
test also suggests strongly that there is no significant difference between the empirical probability density
of the samples generated by the exact simulation and the true density of ST . On the other hand, we need
a large number of time steps for the Euler scheme to generate samples with a comparable quality.

Figure 4: The empirical probability densities of ST generated from the exact simulation and the Euler scheme against

its theoretical density. S0 = 0 and b = T = 1. One million accepted samples were simulated in our exact simulation. The

Kolmogorov-Smirnov goodness-of-fit test justifies the outcomes from the exact simulation. The KS statistic is 0.7314 and

its corresponding p-value equals 0.6486. For the purpose of comparison, we simulate the Euler scheme with the number of

time steps N = 1, N = 10, and N = 50. The computation time for 1 million samples under our exact simulation is 3,624

seconds. The configuration of the PC we used is Intel Core 2, 2.66GHz, and 2.87GB of Ram. The version of Matlab is

Matlab 7.12.0(R2011a).

6.2 A Double-Well Potential Model The following model is artificially made to illustrate the
ability of the exact simulation to deal with transitional densities with strong non-normality. Suppose
that X follows

dXt = (Xt −X3
t )dt + dWt.

The value range of this model is DX = (−∞,+∞). We have φ(y) = (1 − 2y2 − 2y4 + y6)/2 and
A(y) = y2/2−y4/4. It is easy to show there are two modes: x = ±1 in the long-run stationary distribution
of this process. Hence its transition distribution significantly differs from normal distributions. Figure 5
plots the empirical transition densities of XT given X0 = 0.5 and X0 = 0, respectively, with T = 1/2.
Both the pictures exhibit a strong non-normality of the transition density of the process. No matter
which value the process starts from initially, the exact simulation method can capture the non-normality
immediately. However, the Euler schemes are not able to deliver accurate outcomes unless we considerably
increase the number of discretization steps.
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Figure 5: The empirical transitional densities for a double-well potential process under the exact simulation and the Euler

scheme. The initial values are x = 0.5 and x = 0 for the top and bottom panels, respectively. For the purpose of comparison,

we use an approximation proposed by Aı̈t-Shahalia [5] as the true density of XT . It is apparent that the outputs from the

Euler schemes tend to what is obtained from the exact simulation as the discretization is increasingly fine. The computation

times for 1 million samples under our exact simulation are 4,259 and 4,385 seconds, respectively. The configuration of the

PC we used is Intel Core 2, 2.66GHz, and 2.87GB of Ram. The version of Matlab is Matlab 7.12.0(R2011a).

6.3 Cox-Ingersoll-Ross Square-Root Process Consider the sampling of the CIR process (5)
in this subsection. Given X0 = x, the transition distribution of XT is known as (Feller [23] and Cox,
Ingersoll and Ross [18]):

XT
d=

σ2(1− e−bT )
4b

· χ2
d

(
4be−bT

σ2(1− e−bT )
x

)
,

where χ2
d(λ) is a noncentral chi-square random number with d = 4a/σ2 degrees of freedom and noncentral

parameter λ. Under the corresponding Lamperti transform F (y) = 2(
√

y −
√

x)/σ, the transformed
process Yt = F (Xt) then follows the SDE:

dYt = α(Yt)dt + dWt =
[(

4a− σ2

2σ2

)
1

(Yt + 2
√

x/σ)
− b

2

(
Yt +

2
√

x

σ

)]
dt + dWt, Y0 = 0.

Because Xt ≥ 0, Yt should be larger than y = −2
√

x/σ for t ≥ 0. Assumption 3.3 imposes a constraint
on the process parameters that 2a/σ2 > 3/2 to ensure that α(y) ≥ 1/(y − y). Figure 6 illustrates the
results of our algorithm in the simulation of a case when a = 0.07, b = 0.25, and σ = 0.3. The exact
simulation yields a perfect consistence with the true probability density of the CIR model.

In Subsection 5.2, we point out that the efficiency of our exact simulation may be under the influence
of the user-impatience bias, in particular, in the simulation of SDEs with boundaries. The following
experiment is designed to investigate this issue. Let 2a/σ2 = 1.50001, X0 = 0.001, and T = 10. Appar-
ently, these values are very extreme to model the real financial market. The purpose of such parameter
choices is to make the process have a larger chance to stay near the lower boundary so that we have
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Figure 6: The exact simulation of the CIR model. The picture shows the empirical density function generated by our

exact simulation against the theoretical density of the CIR model. X0 = 0.02, a = 0.07, b = 0.25, σ = 0.3, and T = 1. For

the purpose of comparison, we also generate samples from the true density of the CIR model. The three density curves are

indistinguishable. We employ the Kolmogorov-Smirnov goodness-of-fit test for validation. The KS statistic is 0.6755 and

the corresponding p-value is 0.7516, respectively. The computation times for 1 million samples under our exact simulation

is 1,745 seconds. The configuration of the PC we used is Intel Core 2, 2.66GHz, and 2.87GB of Ram. The version of Matlab

is Matlab 7.12.0(R2011a).

to use many intermediate steps to reach T = 10, which might bring us a tremendous computational
burden potentially. However, Table 2 demonstrates that even such extreme parameters have only a very
limited impact on the efficiency of the exact simulation. As in Subsection 6.1, we use the number of

1000 ≤ RV S < 2000 2000 ≤ RV S < 3000 3000 ≤ RV S < 5000 RV S ≥ 5000
97801 533 279 307

Table 2: The distribution of RVS to produce 1 M samples of X10 when X0 = 0.001, a = 0.00750005, b = 0.2, σ = 0.1,

and T = 10. The average of RVS is 500.58 and the maximum of RV S is 79755.

random variable simulated (RVS) for each sample path as a rough measure of the computational effort.
The table records the distribution of RVS to produce 1 million samples of X10. We can see that about
99.9 percents of the samples need less than 2000 RVS. Furthermore, we find in the experiments that the
actual computational time is very small even for those samples which needs large RVS. Both observations
strongly suggests that the user-impatience will not constitute a serious concern for our method.

We then introduce the effect of the user-impatience bias to the above experiment intentionally by
abandoning one sample path in which we need more than 3,000 RVS. We choose 3,000 as the threshold
because it is almost equivalent to the workload of an Euler scheme with daily discretization (i.e., ∆T =
1/252) for T = 10. We assume that the user will be impatient if the workload from our exact simulation
algorithm for one sample path exceeds the workload of a corresponding Euler scheme. Figure 7 shows
the outcomes of the probability density estimation changes very little before and after such operation.
This is consistent with the observations we made in Table 2. Since we only have a negligible portion of
samples in which large simulation effort is needed, whether or not abort those samples will not generate
too much difference between both estimations.

Finally, we point out one advantage of the exact simulation over the discretization schemes: they do
not distort the distribution around the boundary, while we need to increase the number of time step
very significantly for the discretization schemes in avoidance of such distortions even for a very short
time horizon. As discussed in Section 2, we cannot apply the vanilla Euler scheme directly on the model
because it does not preserve the non-negativeness of the solution. Thus, a variety of truncations are
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Figure 7: The exact simulation of the CIR model with and without the user-impatience. X0 = 0.001, a = 0.00750005,

b = 0.2, σ = 0.1, and T = 10. Thus, 2a/σ2 ≈ 1.5. For the purpose of comparison, we also generate samples from the true

density of the CIR model. The left and right plot shows the outcomes without and with abandonments, respectively. The

empirical density estimations in both plots are indistinguishable from the true density of the CIR model.

suggested in the literature to correct this. We use two of them to compare with the result of the proposed
exact simulation algorithm. The first is a full truncation method, as suggested by Lord et al. [39]. The
scheme can be written in the following form:

X̃ti = X̃ti−1 + (a− bX̃+
ti−1

)∆t + σ
√

X̃+
ti−1

∆Wi,

where x+ = max(x, 0). This is a modified first-order Euler scheme by truncating the generated samples
on the origin and it appears to produce the smallest error in all of the schemes reviewed by Lord et al.
[39]. The second method is an implicit second-order Milstein scheme in Kahl and Jäckel [33]:

X̃ti
=

X̃ti−1 + a∆t + σ
√

X̃ti−1∆Wi + σ2((∆Wi)2 −∆t)/4

1 + b∆t
.

This discretization scheme is shown to preserve the positivity of the sample paths when 4a > σ2.

Figure 8 illustrates the results of our algorithm, the full truncation and the implicit Milstein scheme
for a case when T = 1/52 (one week). The full truncation method produces a non-zero probability
mass at 0. The implicit Milstein scheme tends to overestimate the density at its peak and right tail and
underestimate the left tail.

Figure 8: The exact simulation of the CIR model under the exact simulation, the full truncation method and the Milstein

scheme. X0 = 0.01, a = 0.8, b = 0.01, σ = 1, and T = 1/52. We use the daily discretization in the latter two schemes, i.e.,

∆T = 1/252. The computation times for 1 million samples under our exact simulation is 2,317 seconds. The configuration

of the PC we used is Intel Core 2, 2.66GHz, and 2.87GB of Ram. The version of Matlab is Matlab 7.12.0(R2011a).
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6.4 Linear-Drift CEV-Type-Diffusion Model The final example of this section uses the model
(8). The Lamperti transform maps X into Y with the dynamic as follows:

dYt =
[
− γ

2(γ − 1)
· 1
f(Yt)

− b(γ − 1)f(Yt) + aσ1/(γ−1)(γ − 1)γ/(γ−1)fγ/(γ−1)(Yt)
]

dt + dWt

where

f(Yt) =
x1−γ

σ(γ − 1)
− Yt.

As Yt approaches x1−γ/(σ(γ−1)), the right boundary of DY , the drift of Y will be influenced dominatingly
by its first term

− γ

2(γ − 1)
· 1
f(Yt)

.

The condition that γ ≥ 1 ensures that the model satisfies Assumption 3. Figure 7 displays the empirical
transition densities of the process for T = 1/12 and T = 1, respectively. We observe a similar conclusion
that we have to increase the number of time steps significantly for the Euler scheme to catch up with the
performance of the exact method.

Figure 9: The exact simulation for Linear-Drift CEV-type. The two panels show the density functions of XT when T =

1/12 and T = 1, respectively. The parameter set is cited from Ait-Sahalia [1]: a = 0.0074, b = 0.0876, σ = 0.7791, γ = 1.48,

which are the MLE estimations fitting Fed fund data from January 1963 to December 1998. For all the schemes displayed

in the plots, we ran 1 million paths. The empirical density obtained by the exact simulation matches very well with the

density function produced by Ait-Sahalia’s closed-form approximation. The computation times for 1 million samples under

our exact simulation are 1,325 and 1,399 seconds, respectively. The configuration of the PC we used is Intel Core 2, 2.66GHz,

and 2.87GB of Ram. The version of Matlab is Matlab 7.12.0(R2011a).
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Appendix A. Simulation of Brownian Bridges. A Brownian bridge are defined as a solution
to a particular SDE:

dBt =
b−Bt

T − t
dt + dWt, B0 = a. (20)

for t ∈ [0, T ) and given numbers a, b and T > 0. It has a more appealing representation for simulating
purposes: a standard Brownian motion conditioning on that it starts from a and ends at b. From this,
we can derive that Bt follows a normal distribution

Bt ∼ N

(
(T − t)a + tb

T
,
t(T − t)

T

)
.

To sample it, simply let

Bt =
(T − t)a + tb

T
+

√
t(T − t)

T
Z,

with Z ∼ N(0, 1).

To simulate a vector of (Bt1 , · · · , Btn) from (20) for 0 < t1 < · · · < tn < T , we can obtain them one
by one. The Markov property of Brownian motion implies that for a given Bti−1 , Bti

is independent of
all Bt with t < ti−1, and given Bti+1 , Bti

is independent of all Bt with t > ti+1. Thus,

(Bti
|Bt1 , · · · , Bti−1 , Bti+1 , · · · , Btn

) d= (Bti
|Bti−1 , Bti+1)

∼ N

(
(ti+1 − ti)Bti−1 + (ti − ti−1)Bti+1

ti+1 − ti−1
,
(ti+1 − ti)(ti − ti−1)

ti+1 − ti−1

)
.

Then, the simulation of Bti is accomplished through

Bti
=

(ti+1 − ti)Bti−1 + (ti − ti−1)Bti+1

ti+1 − ti−1
+

√
(ti+1 − ti)(ti − ti−1)

ti+1 − ti−1
Z,

where Z ∼ N(0, 1), independent of all Bt1 , · · · , Bti−1 , Bti+1 , · · · , Btn
. By repeatedly using the above

observations, we can sample (Bt1 , · · · , Btn
) in any order. In particular, start by generating Btn

from
N(((T − tn)a + tnb)/T, tn(T − tn)/T ) and proceed backward to sample the other intermediate values, at
each step conditioning on the two closet time points.

Appendix B. Proofs of Main Results. We prove the main results of the paper in this appendix.

Proof of Theorem 4.1. Given Yζi−1 = x, ζi−1 = t, denote Ỹu := Yu+ζi−1 − Yζi−1 for u ≥ 0. Then

dỸu = α(x + Ỹu)du + dWu

and Ỹ0 = 0. Therefore, ∆ζi = inf{u ≥ 0 : |Ỹu| = L} and ∆Yi = Ỹ(T−t)∧ζ , respectively. Let Sn = inf{u ≥
0 : |Ỹu| = n} and S = limn→+∞ Sn. Assumptions 3.1-3.3 allow us to use a generalized Girsanov theorem
(see, e.g., Karatzas and Shreve [35, Exercise 5.5.28]) to conclude that for every finite T > 0, any Borel
set Γ ⊂ R and s > 0,

P [Ỹ(T−t)∧∆ζi
∈ Γ, ζ ∈ ds, S > T − t]

= E

[
exp

(∫ T−t

0

α(x + Wu)dWu −
1
2

∫ T−t

0

α2(x + Wu)du

)
· 1{W(T−t)∧ς∈Γ,ς∈ds}

]
. (21)

Note that Aı̈t-Sahalia [2] proves that P [S = +∞] = 1 when Assumptions 3.1-3.3 hold. Part (iii) of
Exercise 5.5.28 in Karatzas and Shreve [35] further implies that the nonnegative supermartingale

Zt = exp
(∫ t

0

α(x + Wu)dWu −
1
2

∫ t

0

α2(x + Wu)du

)
, 0 ≤ t < +∞,

is a true martingale.

Conditioning on F(T−t)∧ς and invoking the towering rule of conditional expectations, the right hand
side of (21) equals

E

[
E

[
exp

(∫ T−t

0

α(x + Wu)dWu −
1
2

∫ T−t

0

α2(x + Wu)du

)
· 1{W(T−t)∧ς∈Γ,ς∈ds}

∣∣∣F(T−t)∧ς

]]

= E

[
exp

(∫ (T−t)∧ς

0

α(x + Wu)dWu −
1
2

∫ (T−t)∧ς

0

α2(x + Wu)du

)
· 1{W(T−t)∧ς∈Γ,ς∈ds}

]
(22)



22 Chen and Huang: Exact Simulation of SDEs
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©201x INFORMS

On the other hand, applying Ito’s lemma on A(x + Wt) for any t leads to

A(x + Wt) = A(x) +
∫ t

0

α(x + Wu)dWu +
1
2

∫ t

0

α′(x + Wu)du. (23)

Combining (22) and (23) with (21) yields

P [Ỹ(T−t)∧ζ ∈ Γ, ζ ∈ ds, S > T − t]

= E

[
exp

(
A(x + W(T−t)∧ς)−A(x)−

∫ (T−t)∧ς

0

φ(x + Wu)du

)
· 1{W(T−t)∧ς∈Γ,ς∈ds}

]
, (24)

where φ = (α2 + α′)/2. The left hand side of (24) equals to P [Ỹ(T−t)∧ζ ∈ Γ, ζ ∈ ds] because P [S >
T − t] = 1 and thus,

P [Ỹ(T−t)∧ζ ∈ Γ, ζ ∈ ds]

= exp(−A(x)) · E

[
exp

(
A(x + W(T−t)∧ς)−

∫ (T−t)∧ς

0

φ(x + Wu)du

)
1{W(T−t)∧ς∈Γ,ς∈ds}

]
.

From the above equality, we know

P [∆ζi ∈ ds, ∆Yi ∈ dy|Yζi−1 = x, ζi−1 = t]
P [ς ∈ ds, Wς∧(T−t) ∈ dy]

= exp(−A(x) + A(x + y)) · E

[
exp

(
−
∫ s∧(T−t)

0

φ(x + Wu)du

)∣∣∣ς = s,Wς∧(T−t) = y

]
.

�

Proof of Theorem 4.2. Consider the case of ς1 = s and Wς1 = −1 only. The arguments for the
case of Wς1 = 1 are totally same by the symmetrical property of the law of standard Brownian motion.
Denote ms = min{Wt : 0 ≤ t ≤ s} and Ts = inf{0 ≤ t ≤ s : Wt = ms}. Using these new notations, the
event {ς1 = s,Wς1 = −1} occurs if and only if Ts = s, WTs

= −1, and max0≤t≤s Wt < 1. Therefore, for
all yi ∈ (0, 2), 1 ≤ i ≤ n,

P [W̃t1 ∈ dy1, · · · , W̃tn
∈ dyn|ς1 = s,Wς1 = −1]

= P [W̃t1 ∈ dy1, · · · , W̃tn
∈ dyn|Ts = s,WTs

= −1, max
0≤t≤s

W̃t < 2].

Applying the Bayes’ rule on the right hand side of the above equality, we have that it must be equal to

P [W̃t1 ∈ dy1, · · · , W̃tn
∈ dyn,max0≤t≤s W̃t < 2|Ts = s,WTs

= −1]

P [max0≤t≤s W̃t < 2|Ts = s,WTs = −1]
. (25)

Williams [46] shows that the path of W decomposes at its time of minimum into two back-to-back
path fragments, which are two independent Brownian meanders respectively. Imhof [31] further proves
that a Brownian meander can be represented in terms of three independent Brownian bridges. Applying
these two classical results here,

(W̃t, 0 ≤ t ≤ s|Ts = s,WTs
= −1) d= (B̃t, 0 ≤ t ≤ s),

where B̃ is defined in (16). In particular, the numerator of (25) should equal

P [W̃t1 ∈ dy1, · · · , W̃tn
∈ dyn, max

0≤t≤s
W̃t < 2|Ts = s,WTs

= −1]

= P [B̃t1 ∈ dy1, · · · , B̃tn
∈ dyn, max

0≤t≤s
B̃t < 2]

= P [ max
0≤t≤s

B̃t < 2|B̃t1 = y1, · · · , B̃tn
= yn] · P [B̃t1 ∈ dy1, · · · , B̃tn

∈ dyn]. (26)

By the Markov property of B̃, we can further decompose the right hand side of (26) into
n∏

i=1

P [ max
ti≤t≤ti+1

B̃t < 2|B̃ti = yi, B̃ti+1 = yi+1] · P [ max
0≤t≤t1

B̃t < 2|B̃t1 = y1].
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In addition, the denominator of (25) should equal to

P [ max
0≤t≤s

W̃t < 2|Ts = s,WTs = −1] = P [ max
0≤t≤s

B̃t < 2].

Introduce two quantities such that

p(s, x; t, y) := P [ max
s≤u≤t

B̃u < 2|B̃s = x, B̃t = y] and q(s, x) = P [ max
0≤u≤s

B̃u < 2|B̃s = x].

Then,

P [W̃t1 ∈ dy1, · · · , W̃tn
∈ dyn|ς1 = s,Wς1 = −1]

P [B̃t1 ∈ dy1, · · · , B̃tn
∈ dyn]

=
∏n

i=1 p(ti, yi; ti+1, yi+1) · q(t1, y1)

P [max0≤t≤s B̃t < 2]
.

The first half of the theorem statements is thus proved.

The closed-form expressions of p and q can be derived from the results obtained by Pötzelberger
and Wang [42]. According to Imhof [31], the probability law of B̃ is identical with the law of a Brownian
bridge conditioned to stay positive. Denote BBx→y to be the Brownian bridge from x to y on [s, t]. So,

p(s, x; t, y) =
P [0 < BBx→y

u < 2, for all u ∈ [s, t]]
limM→+∞ P [0 < BBx→y

u < M, for all u ∈ [s, t]]

and q(s, x) = limu→0 p(0, u; s, x). Pötzelberger and Wang [42] provide an explicit expression for P [0 <
BBx→y

u < M, for all t ∈ [s, t]]. That is,

P [0 < BBx→y
u < M, for all u ∈ [s, t]] = 1−

+∞∑
j=1

q(j)

where

q(j) =
(
−2(Mj − x)(Mj − y)

t− s

)
+ exp

(
−2(M(j − 1) + x)(M(j − 1) + y)

t− s

)
−

[
exp

(
−2j(M2j + M(x− y))

t− s

)
+ exp

(
−2j(M2j −M(x− y))

t− s

)]
.

Substituting it into the expression of p and some routine calculation will lead to the second half of the
theorem statements. �

Proof of Theorem (4.3). Conditional on that the number of homogenous Poisson arrivals N , the
arrival times τ1, · · · , τN and the sample path of Brownian motions {Wt}, we have

P [I = 1|N, τ1, · · · , τN ,W ] =
exp(A(x + W(T−t)∧ς))

Γ
·

N∏
j=1

φ(x + Wτj
)−m

M −m
· exp(−m((T − t) ∧ ς))
max(1, exp(−m(T − t)))

because Ui, 0 ≤ i ≤ N and V follow uniform distribution. By the tower rule of conditional expectation,

P [I = 1|N, ς,W(T−t)∧ς ] = E[P [I = 1|N, τ1, · · · , τN ,W ]|N, ς,W(T−t)∧ς ]]

=
exp(A(x + W(T−t)∧ς))

Γ
· E

 N∏
j=1

M − φ(x + Wτj
)

M −m

∣∣∣N, ς,W(T−t)∧ς

 · exp(−m((T − t) ∧ ς))
max(1, exp(−m(T − t)))

.

We know that (τ1, · · · , τN ) have the same joint distribution as the order statistics of N independent
uniformly distributed random variables on [0, (T − t) ∧ ς]. Thus,

E

 N∏
j=1

M − φ(x + Wτj )
M −m

∣∣∣N, ς,W(T−t)∧ς


= E

( 1
(T − t) ∧ ς

∫ (T−t)∧ς

0

[
M − φ(x + Wu)

M −m

]
du

)N ∣∣∣N, ς,W(T−t)∧ς

 . (27)
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Note that N ∼ Poisson((M −m)((T − t) ∧ ς)). Then, the right hand side of (27) equals
+∞∑
n=0

E

[(
1

(T − t) ∧ ς

∫ (T−t)∧ς

0

[
M − φ(x + Wu)

M −m

]
du

)n
e−(M−m)((T−t)∧ς)((M −m)((T − t) ∧ ς))n

n!

∣∣∣ς,Wς∧(T−t)

]
Some straightforward algebra manipulations on the above quantity lead to a conclusion that

E

 N∏
j=1

M − φ(x + Wτj )
M −m

∣∣∣N, ς,W(T−t)∧ς

 = E

[
exp

(
−
∫ ς∧(T−t)

0

(φ(x + Wu)−m)du

)
|ς,Wς∧(T−t)

]
.

In light of all the results ahead, we know

P [I = 1|ς,W(T−t)∧ς ] =
exp(A(x + W(T−t)∧ς))

Γ max(1, exp(−m(T − t)))
· E

[
exp

(
−
∫ ς∧(T−t)

0

φ(x + Wu)du

)
|ς,Wς∧(T−t)

]
.

�

Proof of Theorem (5.1). Here we only present a proof to the case of DY = (−∞,∞). The
treatment of SDEs with boundaries is similar but involves with much more details and we skip it for the
interest of space.

Suppose that the theorem statement is not true. That is, for some sample paths, we have J = ∞.
There are two possibilities: either one subsequence of {Yζ1 , Yζ2 , · · · , Yζi

, · · · } tends to ±∞ or the whole
sequence is bounded in an interval, say, [−NL,NL] for a large positive integer N . The first possibility is
ruled out by Assumption 3.3 since Y does not explode in any finite time horizon [0, T ]. We consider the
second possibility only. Note that all Yζ ’s can only take values in a finite set {−NL,−(N−1)L, · · · , (N−
1)L,NL}. Therefore, there must exist some integer k ∈ [−N,N ] such that Yζnj

= kL for all j, where
{Yζnj

, j ≥ 1} is a subsequence of {Yζ1 , Yζ2 , · · · , Yζi
, · · · }.

On the other hand, the assumption that J = ∞ implies that

T >

+∞∑
i=1

∆ζi ≥
∑

j

∆ζnj . (28)

In our simulation scheme, the distribution of ∆ζnj depends only on Yζnj
, which is the same across all

j. Therefore, by the Markovian property of the process Y , all ∆ζnj , j ≥ 1, should be distributed
independently and identically. The law of large number implies that

∑
j ∆ζnj

= +∞. Contradiction to
(28). Then we know that J must be finite almost surely.

We also can see how to prove the theorem for the SDEs with boundaries. Take DY = (y,+∞) as an
example. Using Assumption 3.3, Y cannot reach y and +∞ before T . If J = +∞, this implies that it
will be “recurrent” in DY . In other words, there exists some level y such that the process {Yt, 0 ≤ t ≤ T}
hits y infinite times. This will lead to a contradiction like (28). We skip the detailed reasoning here. �

Appendix C. The Oscillating Property of the Series This part of the Appendix is devoted to
the discussion on the oscillating property of {gJ(t)}, {pJ(s, x; t, y)} and {qJ(s, x)}. Burq and Jones [15,
Lemma 4] have already established the oscillating property of {gJ(t)}. Based on this, they also prove
the expected number of operations needed to simulate ς1 is finite. Thus, we skip sequence {gJ} and only
concentrate on the latter two sequences. The main result is the following proposition:

Proposition C.1 (i). When x, y ∈ (0, 2) and 0 < s < t, for any integer

J ≥ (log 3)(t− s)
8

·max
(

1
x

,
1
y

)
+ 1, (29)

the sequence {pJ(s, x; t, y)} satisfies

0 < p2J+1 − p2J ≤
2
3
(p2J−1 − p2J) ≤

(
2
3

)2

(p2J−1 − p2J−2).

(ii). When x ∈ (0, 2) and 0 < s, for any integer

J ≥ (log 4)s
8

· 1
x

+ 2, (30)
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the sequence {qJ(s, x)} satisfies

0 < q2J+1 − q2J ≤
1
2
(q2J−1 − q2J) ≤ 1

4
(q2J−1 − q2J−2).

Proof. (i). For any integer J satisfying (29) and x, y ∈ (0, 2),

exp
(

2x(4J − y)
t− s

)
≥ 2 and exp

(
2y(4J − x)

t− s

)
≥ 2. (31)

Rearranging the terms in (31), it is easy to see

exp
(
−2(2J − x)(2J − y)

t− s

)
≥ 2 max

{
exp

(
−2J(4J + 2(x− y))

t− s

)
, exp

(
−2J(4J − 2(x− y))

t− s

)}
. (32)

On the other hand, the fact 0 < x, y < 2 also implies

min
{

exp
(

2(2− x)(4J − (2− y))
t− s

)
, exp

(
2(2− y)(4J − (2− x))

t− s

)}
≥ 1.

From it, we have

exp
(
−2(2(J − 1) + x)(2(J − 1) + y)

s2 − s1

)
≥ max

{
exp

(
−2J(4J + 2(x− y))

t− s

)
, exp

(
−2J(4J − 2(x− y))

t− s

)}
. (33)

Summing up (32) and (33) will yield

exp
(
−2(2J − x)(2J − y)

s2 − s1

)
+ exp

(
−2(2(J − 1) + x)(2(J − 1) + y)

s2 − s1

)
≥ 3

2
exp

(
−2J(4J + 2(x− y))

s2 − s1

)
+

3
2

exp
(
−2J(4J − 2(x− y))

s2 − s1

)
,

i.e., 2θJ/3 ≥ ϑJ . Therefore, we have

0 < p2J−1 − p2J <
2
3
(p2J−1 − p2J−2).

The inequality (29) also leads to

exp
(

8Jx

t− s

)
≥ 3 and exp

(
8Jy

t− s

)
≥ 3.

After some algebraic manipulations, we know that

min
{

exp
(
−2J(4J + 2(x− y))

t− s

)
, exp

(
−2J(4J − 2(x− y))

t− s

)}
≥ 3 exp

(
−2(2J + x)(2J + y)

t− s

)
.

Thus,

1
4

exp
(
−2J(4J + 2(x− y))

t− s

)
+

1
4

exp
(
−2J(4J − 2(x− y))

t− s

)
≥ 3

2
exp

(
−2(2J + x)(2J + y)

t− s

)
. (34)

Meanwhile, it is easy to show that, for any integer J and 0 < x, y < 2,

min
{

exp
(
−2J(4J − 2(x− y))

t− s

)
, exp

(
−2J(4J + 2(x− y))

t− s

)}
≥ exp

(
−2(2(J + 1)− x)(2(J + 1)− y)

t− s

)
.

Then,

3
4

exp
(
−2J(4J + 2(x− y))

t− s

)
+

3
4

exp
(
−2J(4J − 2(x− y))

t− s

)
≥ 3

2
exp

(
−2(2(J + 1)− x)(2(J + 1)− y)

t− s

)
.

(35)

Summing up the inequalities (34) and (35), we have 2ϑJ/3 ≥ θJ+1, which implies

0 < p2J+1 − p2J <
2
3
(p2J−1 − p2J).
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(ii). When J satisfies (30) and x ∈ (0, 2),

exp
(

8Jx

s

)
≥ 4 ≥ 2 · 4J + x

4J − x
, (36)

where the first inequality is due to J ≥ (log 4)s/(8x) and the second inequality is because J ≥ 2 and
x < 2. By (36),

1
2
(4J − x) exp

(
−4J(2J − x)

s

)
≥ (4J + x) exp

(
−4J(2J + x)

s

)
,

i.e., ρJ/2 ≥ %J . This implies (q2J−1 − q2J−2)/2 ≥ (q2J−1 − q2J). We also are able to establish

exp
(

4(2− x)(2J + 1)
s

)
≥ 1 ≥ 1

2
· 4(J + 1)− x

4J + x

for those J satisfying (30). Thus, %J/2 ≥ ρJ+1 and we can obtain (q2J−1 − q2J)/2 ≥ (q2J+1 − q2J). �

Proposition C.1 reveals that both sequences of {pJ} and {qJ} converge to their respective limits
exponentially fast. This observation helps us to establish Theorem 4.1.

Proof of Proposition 4.1. Note that q(s, x) = 1 − q∞(s, x)/x. Given U ∈ (0, 1), s > 0, and
x ∈ (0, 2), comparing U and q(s, x) is the same thing as comparing (1− U)x and q∞(s, x). we intend to
show that we can finish the comparison between (1− U)x and q∞(s, x) within at most 2N steps, where
N is specified in the proposition statement. Suppose that it is not true, we must have the following
inequality:

|(1− U)x− q∞(s, x)| ≤ max{|q2N (s, x)− q∞(s, x)|, |q2N+1(s, x)− q∞(s, x)|}.

Note that

N ≥ log(4)s
8

1
x

+ 2.

Following part (ii) of Proposition C.1, for any k ≥ 2N , we know that |qk(s, x) − qk+1(s, x)| ≤
(1/2)k−2N |q2N (s, x)− q2N+1(s, x)|. Therefore,

|q2N (s, x)− q∞(s, x)| ≤
+∞∑

k=2N

|qk(s, x)− qk+1(s, x)| ≤ |q2N (s, x)− q2N+1(s, x)| ·
+∞∑

k=2N

(
1
2

)k−2N

= 2ρN+1.

Similarly, we obtain that
|q2N+1(s, x)− q∞(s, x)| ≤ 2%N+1.

Consequently,

|(1− U)x− q∞(s, x)| ≤ 2 max{ρN+1, %N+1}

= 2max
{

(4N + 4− x) exp
(
− (4N + 4)(2N + 2− x)

s

)
, (4N + 4 + x) exp

(
− (4N + 4)(2N + 2 + x)

s

)}
.

(37)

Since x ∈ (0, 2), we know that the right hand side of (37) must be less than 6(N + 1) exp(−8N2/s).
From the assumption of the proposition, N satisfies that

6(N + 1) exp(−8N2/s) < |(1− U)x− q∞(s, x)|.

Contradicting to (37). Then, we know that (1 − U)x should not be inside the interval
(q2N (s, x), q2N+1(s, x)). If (1−U)x < q2N (s, x), (1−U)x must be less than q∞(s, x); otherwise, (1−U)x
must be larger than q∞(s, x). From this observation, we can finish the comparison between U and q(s, x)
just within 2N steps. �
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